Herd Structures in ‘The Walking Dead’ – CAS Lessons:

zombie_PNG64

The Walking Dead is one of the top-rated TV shows currently. The show is about survival in a post-apocalyptic zombie world. The zombies are referred to as “walkers” in the show. I have written previously about The Walking Dead here. In today’s post, I want to briefly look at Complex Adaptive Systems (CAS) in the show’s backdrop. A Complex Adaptive System is an open non-linear system with heterogenous and autonomous agents that have the ability to adapt to their environment through interactions between themselves and with their environment.

The simplest example to get a grasp of CAS is to look at an ant colony. Ants are simple creatures without a leader telling what each ant should do. Each ant’s behavior is constrained by a set of behavioral rules which determine how they will interact with each other and with their environment. The ant colony taken as a whole is a complex and intelligent system. Each ant works with local information, and interacts with other ants and the environment based on this information. The different tasks that the ants do are patrol, forage, maintain nest and perform midden work. The local information available to each ant is the pheromone scent from another ant. As a whole, their interactions result in a collective intelligence that sustains their colony. In presence of perturbations in their environment, the ants are able to switch to specific tasks to maintain their system. The ants decide the task based on the local information in the form of perturbation to their environment and their rate of interaction with other ants performing the specific tasks. The ants go up in the ranks eventually becoming a forager in the presence of need. A forager ant always stays a forager. The ant colony carries a large amount of “reserve ants” who do not perform any function. This reserve allows for specific task allocation as needed based on perturbations to their environment.

To further illustrate the “self-organizing” or pattern forming behavior of ants, let’s take for example, their foraging activity. The ants will set out from the colony in a random fashion looking for food. Once an ant finds food, it will bring it back to the nest leaving a pheromone trail on its way back. The other ants engaged in the foraging activity will follow the pheromone trail and bring back food while leaving their pheromone scent on the path. The pheromone scent will evaporate over a short amount of time. The ants that followed the shortest path would go back for more food and their pheromone trail will stay “fresh” while a longer path will not remain as “fresh” since the pheromone has more time to evaporate. This means that the path with the strongest pheromone trail is the shortest path to the food. The shortest path was a result of positive feedback loops from more and more ants leaving pheromone at a faster rate. Here the local information available to each ant is the rate of pheromone release from the other ants. The faster the rate, the stronger the trail. This generally corresponds to the shortest trail to the food source. Once the food source is consumed, another food source is identified and a new short path is established. This “algorithm” called as Ant Colony Optimization Algorithm is utilized by several transportation companies to find the shortest routes.

Foraging

In the show, The Walking Dead, a similar collective behavior is shown by the zombies. The zombies exhibit a herding behavior where a large number of zombies will move together as a herd in search for “food”. The zombies in The Walking Dead world are devoid of any intelligence and there is no one in charge similar to the ants. The zombies however do not have a nest. They just wander around. The zombies in the show are attracted by sound, movement and possibly absence of “zombie smell”. The zombies do not attack each other possibly due to the presence of “zombie smell”. In fact, in the show several characters were able to survive zombie attack by lathering themselves in the “zombie goo”.

The possible explanation for the formation of herd structures is the hardwired attribute that we all have – copying others. We tend to follow what others are doing when we are not sure what is happening. We go with the flow. A good example is the wave we do in a sports stadium. We could develop a model where a few zombies are attracted by a stimulus and they walk toward the stimulus. The other zombies simply follow them, and soon a large crowd forms due to the reinforced loops with more and more followers. This is similar to the positive reinforcing feedback of pheromone trail in the example of ants.

The show recently introduced an antagonist group called the “Whisperers”. The Whisperers worship the dead and adorn the zombie skins and walk amongst the zombies. They learned to control the herd and make them go where they want. The Whisperers themselves a CAS, adapted to survive by being with the walkers. Possibly, they are able to guide the walkers by first forming a small crowd themselves and then getting more walkers to join them as they move as a group. Since they have the “zombie smell” on them, the walkers do not attack them.

How Does Understanding CAS Help Us?

We are not ants and certainly not zombies (at least not yet). But there are several lessons we can get from understanding CAS. We all belong to a CAS at work, and in our community. The underlying principle of CAS is that we live in a complex world where we can understand the world only in the context of our environment and our local interactions with our neighbors and with the environment. Every project we are involved in is new and not identical to any previous project. This could be the nature of the project itself, or the team members or the deadlines or the client. Every part of the project can introduce a new variation that we did not know of. Given below are some lessons from CAS.

  1. Observe and understand patterns:

Complex Adaptive Systems present patterns due to the agents’ interactions. You have to observe and understand the different patterns around you. How do others interact with each other? Can you identify new patterns forming in the presence of new information or perturbations in your environment? Improve your observation skills to understand how patterns form around you. Look and see who the “influencers” are in your team.

  1. Understand the positive and negative feedback loops:

Observe and understand the positive and negative feedback loops that exist around. A pattern forms based on these loops. The awareness of the positive and negative loops will help us nurture the required loops.

  1. Be humble:

Complexity is all around us and this means that we lack understanding. We cannot foresee or predict how things will turn out every time. Complex systems are dispositional, to quote Dave Snowden. They may exhibit tendencies but we cannot completely understand how things work in a complex system. Edicts and rules do not always work and they can have unintended consequences. Every event is possibly a new event and this means that although you can have insights from your past experiences, you cannot control the outcomes. You cannot simply copy and paste because the context in the current system is different.

  1. Get multiple perspectives always (reality is multidimensional and constructed):

Get multiple perspectives. To quote the great American organizational theorist, Russell Ackoff, “Reality is multidimensional.” To add to this, it is also constructed. The multiple perspectives help us to understand things a little better and provide a new perspective that we were lacking. Systems are also constructed and can change how it appears depending on your perspective.

  1. Go inside and outside the system:

We cannot try to understand a system by staying outside it all of the time. Similarly, we cannot understand a system by staying inside it all of the time. Go to the Gemba (the actual workplace) to grasp the situation to better understand what is going on. Come away from it to reflect. We can understand a system only in the context of the environment and the interactions going on.

  1. Have variety:

Similar to #4, variety is your friend in a complex system. Variety leads to better interactions that will help us with developing new patterns. If everybody was the same then we would be reinforcing the same idea that would lack the requisite variety to counter the variety present in our environment. Our environment is not homogenous.

  1. Aim for Effectiveness and not Efficiency:

In complex systems, we should aim for effectiveness. Here, the famous Toyota heuristic, “Go slow to go fast” is applicable. Since each event is novel, we cannot aim for efficiency always.

  1. Use Heuristics and not Rules:

Heuristics are flexible and while rules are rigid. Rules are based on past experiences and lack the variety needed in the current context. Heuristics allow flexing allowing for the agents to change tactics as needed.

  1. Experiment frequently with safe to fail small experiments:

As part of prodding the environment, we should engage in frequent and small safe to fail experiments.  This helps us improve our understanding.

  1. Understand that complexity is always nonlinear, thus keep an eye out for emerging patterns:

Complexity is nonlinear and this means that a small change can have an unforeseen and large outcome. Thus, we should observe for any emerging patterns and determine our next steps. Move towards what we have identified as “good” and move away from what we have deemed as “bad”. Patterns always emerge bottom-up. We may not be able to design the patterns, but we may be able to recognize the patterns being developed and potentially influence them.

Final Words:

My post has been a very simple look at CAS. There are lot more attributes to CAS that are worth pursuing and learning. Complexity Explorer from Santa Fe institute is a great place to start. I will finish with a great quote from the retired United States Army four-star general Stanley McChrystal, from his book, Team of Teams:

“The temptation to lead as a chess master, controlling each move of the organization, must give way to an approach as a gardener, enabling rather than directing. A gardening approach to leadership is anything but passive. The leader acts as an “Eyes-On, Hands-Off” enabler who creates and maintains an ecosystem in which the organization operates.”

Always keep on learning…

In case you missed it, my last post was Conceptual Metaphors in Lean:

2 thoughts on “Herd Structures in ‘The Walking Dead’ – CAS Lessons:

Leave a comment