The Conundrum of Autonomy in Systems:

In my previous post, I talked about the idea of the Copernican revolution in philosophy by Immanuel Kant. In today’s post, I am expanding upon the ideas originated by Kant, especially autonomy and how it poses challenges in how we view human systems. I am also heavily relying on the ideas of Ralph Stacey. Kant had a lot to say about human autonomy. Autonomy stands for the ability to set laws for oneself or the ability to perform actions that are not directed by someone else. Kant viewed humanity as an end in itself and not a means to an end. Humans should not be used simply as a means to get something done. Humans, Kant noted, have the power to act according to their own conception of laws.

Kant was one of the pioneers of systems thinking. He understood the idea of circular causality and self-organization. Kant proposed that all living beings can be viewed as self-organizing systems rather than mechanisms such as a clock. The idea of a self-organizing system meant that the idea of feedback is important. However, Kant made an important distinction when it came to human beings. He proposed that humans cannot be understood as merely being a part of the “system” of nature. For this he used some ideas from Aristotle. Kant noted that all other living beings follow a formative causality, where the structure determines the unfolding of the living being itself. For example, a tree follows the unfolding of their lifecycle from a seed. The same formative causality is applicable to the human body; however, this is not applicable to the human being as a whole who has autonomy. This is beautifully explained by Ralph Stacey:

Humans are part of nature but if nature is governed by fixed mechanistic and systemic laws, then they cannot have any freedom to make their own choices… the body is subject to the fixed laws of nature but the mind is governed by the laws of reason, rationalist causality, and it is reason that makes us free. Kant was here formulating the theory of autonomous, rational individual who chooses goals and actions required to achieve them on the basis of reason. Kant then stressed that autonomous individuals could not be understood as parts of a whole because then they would be subject to the whole and so lose their autonomy. The notion of a system could, therefore, not be applied to reasoning individuals and it would not be valid to regard society as a system whose parts were individuals.

The idea of structure determining the outcome is a prevalent theme in many schools of Organizational Management. However, the idea of humans as being rule-following parts of the “system” should be challenged. In the light of the understanding that we are autonomous individuals with many self-imposed purposes and needs, the mechanistic view of an organization system based on structure falls apart. The “human body” may be viewed as a system, however a human being cannot be viewed as a system or being a part of a system.

The notion of Systems Thinking as being a study of real systems that can be observed objectively is still prevalent. This view suggests ideas such as learning organization or complex adaptive systems. Stacey again provides wisdom in this aspect:

For me, the claim that organizations learn amounts to both reification and anthropomorphism. I argue that organizations are not things because no one can point to where an organization is –all one can point to is the artefacts used by members of organizations in their work together. In our experience, the organization qua organization arises as the patterning of our interactions with each other… Since an organization is neither inanimate thing nor living body, in anything other than rather fanciful metaphorical terms, it follows that an organization can neither think nor learn.

The conundrum of autonomy also brings the important point that objective reality is not possible. The idea that a manager can objectively view the organization by being outside the organization must be reevaluated. This notion implies that the manager can use scientific thinking and identify rules to implement to optimize the organization. But this again utilize the idea that humans can be viewed as mere parts of a system. Stacey cautions us against this:

Management science equates the manager with the scientist and the organization with the mechanistic phenomenon that the scientist is concerned with. The manager’s main concern is with getting the right “if-then” causal rules. There is a quite explicit assumption that there is some set of rules that are optimal, that is, that produce the most efficient global outcome of the actions of the parts, or members, of the organization. There is an important difference between the scientist concerned with nature and the analogous manager concerned with an organization. The scientist discovers the laws of nature while the manager, in the theory of management science, chooses rules driving the behavior of organization’s members. In this way, there is rationalist causality, but it applies only to the manager who exercises the freedom of autonomous choice in the act of choosing the goals and designing the rules that the members of the organization are to follow in order to achieve the goals. Those members are assumed to be rule-following entities. The organizational reality, of course, is that members of an organization are not rule-following entities and they all do choose their own goals and actions to some extent.

Final Words:

Edgar Morin wonderfully noted that the autonomy of a system is less than the sum of autonomies of all the individual parts of a system. The idea that humans should not be viewed as being parts of a system should challenge your current view points on systems thinking. Kant proposed that we are using an as-if metaphor to construct reality since we do not have access to the external reality. From this standpoint, we can notate that systems are not real entities in the real world. Humans are autonomous and this means that we cannot stipulate purposes for other people. The freedom of the employee puts a constraint on the organization, and the freedom of the organization puts a constraint on the employee. This requires an ongoing reinterpretation and adjustment of intentions and values at all levels of recursions in an organization. This is not a conundrum to be solved. It is a creative tension that should be reinterpreted as often as possible.

I will finish with a Zen story:

A man is riding on top of a horse that is galloping by frantically, as if he has to be somewhere important, as soon as possible. A bystander sees this and asks the man, “Where are you going?

“I don’t know,” the rider replies, “ask the horse!

Wear a mask, stay safe and Always keep on learning…

In case you missed it, my last post was Copernican Revolution – Systems Thinking:

Copernican Revolution – Systems Thinking:

In today’s post, I am looking at “Copernican Revolution”, a phrase used by the great German philosopher, Immanuel Kant. Immanuel Kant is one of the greatest names in philosophy. I am an Engineer by profession, and I started learning philosophy after I left school. As an Engineer, I am trained to think about causality in nature – if I do this, then that happens. This is often viewed as the mechanistic view of nature and it is reliant on empiricism. Empiricism is the idea that knowledge comes from experience. In contrast, at the other end of knowledge spectrum lies rationalism. Rationalism is the idea that knowledge comes from reason (internal). An empiricist can quickly fall into the trap of induction, where you believe that there is uniformity in nature. For example, if I clapped my hand twenty times, and the light flickered each time, I can then (falsely) conclude that the next time I clap my hand the light will flicker. My mind created a causal connection to my hand clapping and the light flickering.

David Hume, another great philosopher, challenged this and identified this approach as the problem of induction. He suggested that we, humans, are creatures of habit that we assign causality to things based on repeat experience. His view was that causality is assigned by us simply by habit. His famous example of challenging whether the sun will rise tomorrow exemplifies this:

That the sun will not rise tomorrow is no less intelligible a proposition, and implies no more contradiction, than the affirmation, that it will rise.

Hume came up with two main categories for human reason, often called Hume’s fork:

  1. Matters of fact – this represents knowledge that we gain from experience (synthetic), and this happens after the fact of experience (denoted by posteriori). An example is – the ball is heavy. Thinking cannot provide the knowledge that the ball is heavy. One has to interact with the ball to learn that the ball is heavy.
  2. Relation of ideas – this represents knowledge that does not rely on experience. This knowledge can be obtained simply through reason (analytic). This was identified as a priori or from before. For example – all bachelors are unmarried. No experience is needed for this knowledge. The meaning of unmarried is predicated in the term “bachelor”.

All the objects of human reason or enquiry may naturally be divided into two kinds, to wit, relations of ideas, and matters of fact. Of the first kind are the sciences of Geometry, Algebra, and Arithmetic … [which are] discoverable by the mere operation of thought … Matters of fact, which are the second object of human reason, are not ascertained in the same manner; nor is our evidence of their truth, however great, of a like nature with the foregoing.

Hume’s fork stipulates that all necessary truths are analytical, the meaning is predicated in the statement. Similarly, knowledge regarding matters of fact indicate that the knowledge is contingent on the experience gotten from the interaction. This leads to further ideas such as – there is a separation between the external world and the knowledge about the world. The knowledge about the world would come only from the world through empiricism. One can view this as the human mind revolving around the world.

Immanuel Kant challenged the idea of Hume’s fork and came up with the idea of a priori synthetic knowledge. Kant proposed that we, humans, are bestowed with a framework for reasoning that is a priori and yet synthetic. Kant synthesized ideas from rationalism and empiricism, and added a third tine to Hume’s fork. Kant famously stated – That all our knowledge begins with experience there can be no doubt. Kant clarified that it does not follow that knowledge arises out of experience. What we come to know is based on our mental faculty. The mind plays an important role in our knowledge of the world. The synthetic a priori propositions say something about the world, and yet at the same time they say something about our mind.

How the world is to us depends on how we experience it, and thus the knowledge of the external world is dependent on the structure of our mind. This idea is often described as a pair of spectacles that we are born with. We see the world through this pair of spectacles that we cannot take off. What we see forms our knowledge of the world, but it is dependent on the pair of spectacles that is a part of us. Kant’s great idea is that our knowledge of the world does not conform to the world. Our knowledge of the world conforms not to the nature of the world, but to the nature of our internal faculties. To paraphrase Heinz von Foerster, we do not see the world as is, it is as we see it.

Nicholas Copernicus, the Polish astronomer, came up with a heliocentric view of the world. The prevalent idea at the time was that the celestial bodies, including the sun, revolved around the earth. Copernicus challenged this, and showed that the earth actually revolves around the sun. Kant, in a similar fashion, suggested that the human minds do not revolve around the world with the meanings coming into our minds. Instead, the world revolves around our minds, and we assign meanings to the objects in the world. This is explained wonderfully by Julie. E. Maybee:

Naïve science assumes that our knowledge revolves around what the world is like, but, Hume’s criticism argued, this view entails that we cannot then have knowledge of scientific causes through reason. We can reestablish a connection between reason and knowledge, however, Kant suggested, if we say—not that knowledge revolves around what the world is like—but that knowledge revolves around what we are like. For the purposes of our knowledge, Kant said, we do not revolve around the world—the world revolves around us. Because we are rational creatures, we share a cognitive structure with one another that regularizes our experiences of the world. This intersubjectively shared structure of rationality—and not the world itself—grounds our knowledge.

Systems:

We have assumed that the knowledge of the world, our cognition, conforms to the world. Kant proposes that all we have access to is the phenomena, and not the actual world. What we are learning is dependent on us. We use an as-if model to generate meaning based on our interaction with the external world. In this viewpoint, the systems are not real things in the world. The systems are concepts that we construct, and they are as-if models that we use to make sense of the phenomena. What we view as systems are the constructions we make and depends on our need for understanding.  

Alan Stewart uses a similar idea to explain his views on constructivism:

The fundamental premise of constructivism is that we humans are self-regulating organisms who live from the inside out. As a philosophical counterpoint to naive realism, constructivism suggests that we are proactive co-creators of the reality to which we respond. Underlying this concept is that perception is an active process in which we ‘bring forth distinctions’. It is our idiosyncratic distinctions which form the structure of the world(s) which each of us inhabits.”

I will finish with a great lesson from Alan Watts:

“Everything in the world is gloriously meaningless.”

To further elaborate, I will add that all meaning comes from us. From a Hume-ian sense, we are creatures of habit in that we cannot stop assigning meaning. From a Kant-ian sense we are law-makers, not law-discoverers.

From a Systems Thinking perspective, we have unique perspectives and we assign meanings based on this. We construct “systems” “as-if” the different parts work together in a way to have a purpose and a meaning, both of which are assigned by us. The meaning comes inside out, not the other way around. To further this idea, as a human collective, we cocreate an emergent phenomenal world. In this aspect, “reality” is multidimensional, and each one of us has a version that is unique to us.  

Stay safe and Always keep on learning…

In case you missed it, my last post was Hegel, Dialectics and POSIWID:

Hegel, Dialectics and POSIWID:

In today’s post, I am looking at Hegel’s dialectical approach and using it to gain a better understanding of the purpose of an organization. Georg Wilhelm Friedrich Hegel (1770 – 1831) was a German philosopher who furthered the ideas of German Idealism in Philosophy after Immanuel Kant. Hegel’s writing is quite dense and he is often considered to be one of the hardest philosophers to understand. With this introduction, I should note here that my post is “inspired” by his dialectical approach.

When we look at a phenomenon say “A”, we are speaking about our understanding of “A”. This understanding automatically brings in the opposite or “notA” to the realm of the understanding. We can denote “notA” as “!A”. Our understanding of “A” lies somewhere between “A” and “!A”. To improve our understanding of “A”, we should also look at “!A”. This is a very simple view of Hegel’s dialectic. The idea of dialectics implies that all abstract concepts are partial and contain innate contradictions. As we further our understanding of the concept, we go through a dialectic process by looking at the innate contradiction (A and !A). The new understanding can be notated as A’, which again is partial and sets off another dialectical process. Hegel’s idea of dialectical process is a holistic approach. Generally, when we speak about contradictions, we either view it as an absurdity that negates any further thought or as a pro-con discussion which leads to choosing one over the other.

Hegel’s view of dialectics has a background based in history. Hegel’s view is that the world is in a movement from one phase to the next. It goes through transformation continuously. Hegel uses this idea of movement from one end to the other for reasoning. This maybe made easier to understand by using the example of a flower bud. Hegel wrote:

The bud disappears when the blossom breaks through, and we might say that the former is refuted by the latter; in the same way when the fruit comes, the blossom may be explained to be a false form of the plant’s existence, for the fruit appears as its true nature in place of the blossom. The ceaseless activity of their own inherent nature makes these stages moments of an organic unity, where they not merely do not contradict one another, but where one is as necessary as the other; and constitutes thereby the life of the whole.

 We can look at this example with the starting point of the seed. The seed grows into a plant. The plant produces the bud, and the bud blooms into a flower, which produces the seed. Each stage brings the past stages with it. To have a good understanding we should also look at the previous stages. Any one stage cannot be viewed in isolation. Any previous stages we bring forth for our understanding is not cancelled, but kept for improving our understanding. The meaning is holistic. Hegel would state that only the truth is whole.

“The truth is the whole. The whole, however, is merely the essential nature reaching its completeness through the process of its own development. Of the Absolute it must be said that it is essentially a result, that only at the end is it what it is in very truth; and just in that consists its nature, which is to be actual, subject, or self-becoming, self-development.”

As Lloyd Spencer and Andrzej Krauze write:

For Hegel, only the whole is true. Every stage or phase or moment is partial, and therefore partially untrue. Hegel’s grand idea is ‘Totality’ – which preserves within it each of the ideas or stages it has overcome or subsumed. Overcoming or subsuming is a developmental process made up of ‘moments’. The Totality is the product of that process which preserves all of its ‘moments’ as elements in a structure, rather than as stages or phases.

The absolute state is where the dialectic movement goes towards. The absolute state has essences of all the past moments we considered. Hegel would call this as “Aufheben.” Aufheben, itself, requires a dialectical approach to understand its meaning since it contains contradictory reflections. The term is translated to English as “sublation”, and it means “to lift up” and also “to cancel”. Hegel is indicating that as we make a dialectical movement, we are preserving some aspects of the moments we are considering while at the same times negating some aspects of the moments. The dialectical movement is generally viewed to be consisting of three moments (as Julie Maybee notes):

  1. The first moment—the moment of the understanding—is the moment of fixity, in which concepts or forms have a seemingly stable definition or determination.
  2. The second moment—the “dialectical” or “negatively rational” moment—is the moment of instability.
  3. The third moment—the “speculative” or “positively rational” moment—grasps the unity of the opposition between the first two determinations, or is the positive result of the dissolution or transition of those determinations.

The common example used to explain this is that of “being <-> not-being <-> becoming”. When we think of “being” we are thinking of a total presence of a being. But to understand this idea, we should also consider the absence of that being or “not-being” or “nothingness”. A being becomes nothing at the end. Or a being comes into existence from “not-being”. This is the act of “becoming”. The idea of “becoming” has the ideas of “being” and “not-being”. As noted earlier, to better understand “A”, we also need to understand “!A”. The higher understanding seems to be an emergent property. The better understanding of “A” lies between “A” and “!A” and requires the movement from “A” to “!A” to get to the higher understanding of “A”.

Another example we can use is that of “beauty”. As Maybee notes:

The highest definition of the concept of beauty, for instance, would not take beauty to be fixed and static, but would include within it the dialectical nature or finiteness of beauty, the idea that beauty becomes, on its own account, not-beauty. This dialectical understanding of the concept of beauty can then overgrasp the dialectical and finite nature of beauty in the world, and hence the truth that, in the world, beautiful things themselves become not-beautiful, or might be beautiful in one respect and not another.

The Purpose of an Organization:

We are taught that organizations have a designed purpose, and we are taught about the constancy of purpose to be a successful organization. Let’s use the idea of a dialectical approach to look at purpose of a system. Our first moment is that Organizations have a purpose and that it is dictated by the “designer” of the Organization. The second moment comes when we realize that the organization is not a single entity but a collective. Organizations are made of humans who themselves are purposeful. The top down designed purpose may not have a meaning as it flows down the organizational chain. Thus, we come to realize that organizations do not have a purpose. Then we come to the third moment with the idea of POSIWID – the purpose of a system is what it does. As the great management cybernetician, Stafford Beer said:

A good observer will impute the purpose of a system from its actions… There is, after all, no point in claiming that the purpose of a system is to do what it consistently fails to do.

From the third moment, we realize that purpose is emergent and is always dynamic. Most importantly, depending upon who is the observer, the purpose will change. Stafford Beer’s Viable System Model is an excellent framework to look at this further. Beer’s model is recursive with viable systems within viable systems. The purpose is different depending upon the level of recursion and depending upon who is observing, and also when the observation is done. The schematic below was Beer’s vision of recursions from the Project Cybersyn in Chile.

An interesting example to further this understanding is the notion that the purpose is always determined by the user. The purpose is the need of the user that needs to be met at any given time. For example, the user may have multiple purposes for a screwdriver depending on the need – as a hammer, as a can opener, as a tool for tightening screws etc. The purpose is dynamic for sure. The environment always has more variety than the organization’s management. I highly encourage the readers to check out Stafford Beer’s Viable System Model.

Final Words:

Every idea is in the process of transformation, and carries with it traces of the ideas they were built on. The same can be said about us humans, individually and collectively. Hegel seems to suggest that all ideas progress towards “Geist” or “Spirit” (the Absolute Knowledge), a state of total and truthful knowledge. No further knowledge is useful or possible. This sounds like a state of maximum entropy. One could view this as – everything is in a progression towards a state of maximum Entropy similar to the ultimate universal heat death!

We need to be open and rational to pursue better understanding. The dialectic movement is possible only when we consider innate contradictions. We can also choose not to pursue the dialectic movement and assume that our current position is stable by ignoring the innate contradictions. Full or Absolute understanding is not possible since we think in abstractions, and all abstractions are partial by definition. We fail to improve our understanding when we assume that we have the “whole” knowledge.

As a note, I should state that I purposefully chose note to use the formulaic thesis-antithesis-synthesis idea since Hegel never used that to explain his ideas.

Hegel reportedly admitted to the difficulty of his ideas. He is sometimes attributed to have said, “When I Wrote It, Only God and I Knew the Meaning; Now God Alone Knows.”

On his deathbed he noted, “There was only one man who ever understood me, and even he didn’t understand me.”

To keep up with the theme, I can also offer the great British philosopher Bertrand Russel’s criticism of Hegel as the second moment:

Hegel’s philosophy is so odd that one would not have expected him to be able to get some men to accept it, but he did. He set out with so much obscurity that people thought it must be profound. It can quite easily be expounded lucidly in words of one syllable, but then its absurdity becomes obvious.

Stay safe and Always keep on learning…

In case you missed it, my last post was Shingo’s Whys:

The Truths of Complexity:

The Covid 19 pandemic has given me an opportunity to observe, meditate and learn about complexity in action. In today’s post, I am looking at “truths” in complexity. Humans, more than any other species, have the ability to change their environment at a faster pace. They are also able to maintain belief systems over time and act on them autonomously. These are good reasons to call all “human systems” complex systems.

The Theories of Truth:

Generally, there are three theories of truth in philosophy. They are as follows:

  1. Correspondence theory of truth – very simply put, this means that what you have internally in your mind corresponds one-to-one with the external world. The statement you might make such as – “the cat is on the mat” is true, if there are truly a cat and a mat, and if that cat is on that mat. The main objection to this theory is that we don’t have access to have an objective reality. What we have is a sensemaking organ, our brain, that is trying to make sense based on the data provided by the various sensory organs. The brain over time generates stable correlations which allows it to abstract meanings from the filtered information from the sensory data. The correspondence theory is viewed as a “static” picture of truth, and fails to explain the dynamic and complex nature of reality.
  2. Coherence theory of truth – In this approach, a statement is true if it is coherent with the different specified set of beliefs and propositions. Here the idea is more about a fit and harmony with existing beliefs. The coherence theory is about consistency. An objection to this theory is that the subjective nature of a statement can “bend” to match the existing strong belief systems. Perhaps, a good example of this is the recent poll that found that the majority of democrats fear that the worst is yet to come for the Covid 19 pandemic, while the majority of republicans believe that the worst is over. Another criticism against this is that we can be inconsistent in our beliefs as indicated by cognitive dissonance.
  3. Pragmatic Theory of truth – The pragmatic theory of truth was put forth as an alternative to the static correspondence theory of truth. In this theory, the value of truth is dependent on the utility it brings. Pragmatic theories of truth have the effect of shifting attention away from what makes a statement true and toward what people mean or do in describing a statement as true. As one of the proponents of Pragmatic theory, William James, put it – True beliefs are useful and dependable in ways that false beliefs are not:‘You can say of it then either that “it is useful because it is true” or that “it is true because it is useful”. Both these phrases mean exactly the same thing.’ One of my favorite explanations of pragmatic theory comes from Richard Rorty, who viewed it as coping with reality, rather than copying reality. One of the criticisms against the pragmatic theory of truth is how it explains truth in terms of utility. As John Capps notes, utility, long-term durability, and assertibility (etc.) should be viewed not as definitions but rather as criteria of truth, as yardsticks for distinguishing true beliefs from false ones.

Sensemaking Complexity:

From the discussion of truth, we can see that seeking truth is not an easy task, especially when we deal with complexity of human systems. Our natural tendency is to find order as pleasing and reassuring. We try to find order in all we can, and we try our best to maintain order as long as we can. In this attempt, we often neglect the actual complexity we are dealing with. A common way to distinguish complexity of a phenomenon is – ordered, complicated or complex. We can say a square peg in a square hole is an ordered phenomenon. The correspondence theory of truth is quite apt here because we have a one to one relationship. We have a very good working knowledge of cause and effect. As complexity increases, we get to complicated phenomenon where there is still somewhat a good cause and effect relationship. A car can be viewed as a complicated phenomenon. The correspondence theory is still apt here. Once we add a human to the mix, we get to complexity. Imagine the driver of a car. Now imagine thousands of drivers all at once. The correspondence theory of truth falls apart fast here.

The main source of complexity in the example discussed above comes from humans. We are autonomous, and we are able to justify our own actions. We may go faster than the speed limit because we are already late for the appointment. We may overtake on the wrong side because the other driver is driving slowly. We assign meanings and we also assign purposes for others. We do not always realize that other humans also have the same power.

We have seen varying responses and behavior in this pandemic. We have seen the different justifications and hypotheses. We agree with some of them and strongly disagree with others depending on how they cohere with our own belief systems. The actual transmission of the virus is fairly constrained. It transmits mainly from person to person. The transmission occurs mainly through respiratory droplets. Every human interaction carries some risk of becoming infected if the other person is a carrier of the virus. However, the actual course of the pandemic has been complex.

Philosophical Insights to Sensemaking Complexity:

I will use the ideas of Friedrich Nietzsche and William. V.O. Quine to further look at truth and how we come to know about truth. Nietzsche had a multidimensional view of truth. He viewed truth as:

A mobile army of metaphors, metonyms, and anthropomorphisms—in short, a sum of human relations which have been enhanced, transposed, and embellished poetically and rhetorically, and which after long use seem firm, canonical, and obligatory to a people: truths are illusions about which one has forgotten that this is what they are; metaphors which are worn out and without sensuous power; coins which have lost their pictures and now matter only as metal, no longer as coins.

He emphasized on the abstract nature of truth. One comes to view the abstractions/metaphors as stand in for reality, and eventually falsely equate them to reality.

Every word immediately becomes a concept, in as much as it is not intended to serve as a reminder of the unique and wholly individualized original experience to which it owes its birth, but must at the same time fit innumerable, more or less similar cases—which means, strictly speaking, never equal—in other words, a lot of unequal cases. Every concept originates through our equating what is unequal.

Nietzsche advised us against using a cause-effect, correspondence type viewpoint in sensemaking complexity:

It is we alone who have devised cause, sequence, for-each-other, relativity, constraint, number, law, freedom, motive, and purpose; and when we project and mix this symbol world into things as if it existed ‘in itself’, we act once more as we have always acted—mythologically. 

As Maureen Finnigan notes in her wonderful essay, Nietzsche’s Perspective: Beyond Truth as an Ideal:

As truth is not objective, in like manner, it is not subjective. Since thinking is not wholly rational, disconnected from the body, or independent of the world, the subjective perception, or conception, of truth through the intellect alone is impossible. “The ‘pure spirit’ is pure stupidity: if we subtract the nervous system and the senses—the ‘mortal shroud’—then we miscalculate—that is all!” Inasmuch as the individual is not independent from the world, one can neither subjectively nor objectively explain the world as if detached, but must interpret the world from within. Subjective and objective, like True and apparent, soul and body, thinking thing and material thing, intellect and sense, noumena and phenomena, are dualities that Nietzsche aspires to overcome. Thus, although Nietzsche is not a rationalist, this does not mean he falls into the irrationalist camp. He does not abolish reason but instead situates it within life, as an instrument, not as an absolute.

With complexity, we should not look for correspondence but coherence. Correspondence forces categorization while coherence forces connections. This follows nicely into Quine’s Web of Belief idea. Quine’s idea is a holistic approach. We make meanings in a holistic fashion. When we observe a phenomenon, our sensory experience and the belief it generates do not standalone in our entire belief system. Instead, Quine postulates that we make sense holistically with a web of belief. Every belief is connected to other beliefs like a web.

For example, we can say Experience1(E1) led to Belief1(B1), and Experience2(E2) led to Belief2(B2) etc. This has the correspondence nature we discussed earlier. This view prefers the ordered static approach to sensemaking. However, in Quine’s view, it is more dynamic, interconnected and complex. This has the coherence nature we discussed earlier. The schematic below, inspired by a lecture note from Bryan. Van. W. Norden, shows this in detail.

The idea of Web of Belief is clearly explained by Thomas Kelly:

Quine famously suggests that we can picture everything that we take to be true as constituting a single, seamless “web of belief.” The nodes of the web represent individual beliefs, and the connections between nodes represent the logical relations between beliefs. Although there are important epistemic differences among the beliefs in the web, these differences are matters of degree as opposed to kind. From the perspective of the epistemologist, the most important dimension along which beliefs can vary is their centrality within the web: the centrality of a belief corresponds to how fundamental it is to our overall view of the world, or how deeply implicated it is with the rest of what we think. The metaphor of the web of belief thus represents the relevant kind of fundamentality in spatial terms: the more a particular belief is implicated in our overall view of the world, the nearer it is to the center, while less fundamental beliefs are located nearer the periphery of the web. Experience first impinges upon the web at the periphery, but no belief within the web is wholly cut off from experience, inasmuch as even those beliefs at the very center stand in logical relations to beliefs nearer the periphery.

The idea of degrees rather than a concrete distinction between beliefs is very important to note here. Additionally, Quine proposes that when we counter an experience contradicting our belief, we seek to restore consistency/coherence in the web by giving up beliefs that are located near the periphery rather than the ones near the center.

Final Words:

The dynamic nature of complexity is not just applicable to a pandemic but also to scientific paradigms. This is beautifully explained in the quote from Jacob Bronowski below:

“There is no permanence to scientific concepts because they are only our interpretations of natural phenomena … We merely make a temporary invention which covers that part of the world accessible to us at the moment”

Our beliefs shape our experience as much as our experiences shape our beliefs in a recursive manner. The web gets more complex as time goes on, where some of the nodes become more distinct and some others get hazier. We are prone to getting perpetually frustrated if we try to apply a static framework to the dynamic everchanging domain of complexity. It gets more frustrating because patterns emerge on a continuous basis providing an illusion of order. The static and rigid frameworks break because of their rigidity and inflexibility to tackle the variety thrown upon them.

With this mind, we should come to realize that we do not have a means to know the external world as-is. All we can know is how it appears to us based on our web of belief. The pragmatic tradition of truth advises us to keep going on our search for truth, and that this search is self-corrective. The correspondence theory fails us because the meaning we create is not independent of us, but very much a product of our web of belief. At the same time, if we don’t seek to understand others, coherence theory will fail us because we would lack the requisite variety needed to make sense of a complex phenomenon. I will finish with an excellent quote from Maureen Finnigan:

Human beings impose their own truth on life instead of seeking truth within life.

Stay safe and Always keep on learning… In case you missed it, my last post was Korzybski at the Gemba:

Korzybski at the Gemba:

Alfred_Korzybski

In today’s post, I am looking at the ideas of Alfred Korzybski, a Polish American philosopher and the father of General Semantics. General Semantics is a doctrine and educational discipline intended to improve the habits of response of human beings, to their environment and one another. Korzybski wanted to understand humanity and why we don’t always get along.

If a visitor from Mars should come, Korzybski showed, and on a tour of inspection should see our bridges, our skyscrapers, our subways, and other engineering feats, and were to ask, “How often does one of these collapse?” man here would say that if the engineering of these projects were correct in all respects, the material used in their construction carefully inspected, and the work well done, they would never collapse. 

Taken to our libraries the visitor from Mars, he declared, shown the histories of the world, would be appalled that the same men who could engineer non-collapsible bridges and skyscrapers could build a civilization which was collapsing at some point every year. And the reason, he pointed out, for the difference, lay in the fundamental beginnings of the logic that had built each.

Korzybski is most famous for his idea – the map is not the territory. He wrote his magnum opus “Science and Sanity” in 1933. In reading his ideas, we can find many aspects of systems thinking. Korzybski’s main idea can be expressed by one word – “abstraction”. His view was that what we know is based on the structure of our nervous system and the structure of our language (dependent on the nervous system). Our brain cannot directly access the world outside. Our brain understands the world outside through our sensory organs. Our sensory organs do not directly transfer the “what”, but the amount of the stimuli received. The brain abstracts meaning based on all the previous correlations. The brain selects the data to make the most meaningful abstraction at that point in time. For example, the eyes do not tell the brain that there is a black cat on the mat. The entire experience of sensory data is abstracted into “black cat”.

Korzybski stated:

The only link between the verbal and objective world is exclusively structural, necessitating the conclusion that the only content of all “knowledge” is structural. Now structure can be considered as a complex of relations, and ultimately as multi-dimensional order. From this point of view, all language can be considered as names for unspeakable entities on the objective level, be it things or feelings, or as names of relations. In fact… we find that an object represents an abstraction of a low order produced by our nervous system as the result of a sub-microscopic events acting as stimuli upon the nervous system.

800px-StructuralDifferential.svg

Image source – WIkipedia

An important outcome of this idea is that objective reality is lost in translation. All that we have and can have access to are abstractions. Thus, two observers can come to two different conclusions while witnessing the same phenomenon. Both may have some access to the same phenomenon but not to each other’s abstractions. This idea is very well articulated in the famous “the map is not the territory.” Korzybski came up with a structural differential, a multilayered structure for abstraction. The higher you are on the structure differential, the closer you are to the phenomenon/event and the closer you are to the “reality.” The further down you go, the level of abstraction increases. The loss of the data was shown by holes in the structure. We use words to express real things, forgetting that the words are not the real things. They are abstractions.

Korzybski wrote:

‘Say whatever you choose about the object, and whatever you might say is not it.’ Or, in other wordsː ‘Whatever you might say the object “is”, well it is not.’

When we assume that an abstraction is a real thing, it leads to “allness”. We start to believe that we have access to the Truth and that we know all there is to know about something. We also engage in taking things apart, falsely assuming that the collective holistic meaning is maintained. Korzybski called this elementalism. Korzybski advised that we should not verbally separate what we would not empirically separate. The ideas of holism/reductionism in Systems Thinking can be viewed here. Elementalism leads to false dichotomies and linear thinking. “If you are not with me, you are against me.” Or “If I put the best players, we will have the best team.”

Korzybski believed that humans are time binding. This meant that as a species, we are able to transfer knowledge that allow us to stand on the shoulders of the giants and build on what others have done so far. Korzybski wrote:

“All human achievements are cumulative; no one of us can claim any achievement exclusively as his own; we all must use consciously or unconsciously the achievements of others, some of them living but most of them dead.”

This is also applicable for the individual. I build my ideas based on what I already know from the past. An important idea from this is to understand that a thing from yesterday is not the same as the thing from the present. Similar to the Heraclitus quote, “you cannot step into the same river twice”, Korzybski adviced that we should not mistake that things would remain the same. Some of the ideas he proposed to address this were:

  • Indexes – This is the idea in mathematics, where we write x1, x2 etc. Korzybski advised that we should differentiate things with indexes. Each one of us is unique. Korzybski wrote – “When I talk about humanity, I am always conscious that every member of our species is absolutely unique.”
  • Dating – Similar to the idea of indexes, Korzybski advised using dates for anything we write down or document. My knowledge is based on what I know already. My knowledge last month is different from what I know now. Everything changes and change is the only constant. Thus, dating is a way to differentiate and keep track of our understanding.

When we become aware of the structure differential, we can influence how we make meanings and how we react to things. Some more ideas he proposed in this regard were:

  • Quotation mark – When you talk about an abstraction and you really want to point out that it is an abstraction and to be careful in how it is understood, we can use quotation marks. For example, I can say – “Systems” do not exist.
  • Hyphen – Korzybski was influenced a lot by Albert Einstein and his idea of space-time. Einstein went against the existing paradigm that space and time are different, which could be viewed as elementalistic, and came up with space-time, where the three-dimensional space and time are intertwined and time is the fourth dimension. The use of a hyphen can sometimes alleviate the confusion that arises from false dichotomies.
  • Multiordanality – This is the idea that words can have different interpretations depending on the level of abstraction on the structural differential. This is a way to ensure that we don’t lose the context when we assign meaning to words.

Final Words:

Philosophers tends to take positions such as the correspondence theory of truth (our experience should correspond to the actual reality of the world), and the coherence theory of truth (our experience should cohere with what we already know). It appears to me that Korzybski’s ideas are a mix of correspondence in terms of structures and coherence in terms of the holistic notions. We are all different and alike at the same time depending on the abstraction level we use. Korzybski’s ideas resonate wonderfully with the ideas of Soft Systems theory. We humans cocreate the social reality. The purpose and meaning for an individual should not be stipulated by another. I will finish with wonderful reminders from Korzybski. I see them as his ‘ethical imperatives.’

Any organism must be treated as-a-whole; in other words, that an organism is not an algebraic sum, a linear function of its elements, but always more than that. It is seemingly little realized, at present, that this simple and innocent-looking statement involves a full structural revision of our language.

Korzybski, in 1933, called his theory “general semantics” because it deals with the nervous reactions of the human organism-as-a-whole-in-environments, and is much more general and organismally fundamental than the “meanings” of words as such, or Significs.

To regard human beings as tools — as instruments — for the use of other human beings is not only unscientific but it is repugnant, stupid and short sighted. Tools are made by man but have not the autonomy of their maker — they have not man’s time-binding capacity for initiation, for self-direction, and self-improvement.

Stay safe and Always keep on learning…

In case you missed it, my last post was Storytelling at the Gemba:

I also encourage the reader to check out the ideas of Korzybski and General Semantics.

You may also want to check out my related posts:

Newton’s Eye/Bodkin Experiment and the Principle of Undifferentiated Coding:

The Map at the Gemba:

Hermeneutics at the Gemba:

Hgadamer

In today’s post, I am looking at Hermeneutics. Hermeneutics is a branch of philosophy that deals with interpretation. It started off as a study of interpreting religious texts. The word has its origin from the Greek God Hermes, who was also the messenger of the Gods (herald) to humans. Hermes’ job was to interpret the words of the many Greek gods to humans. As you go back in time, there was only one interpretation to a religious text, and it was usually provided by the chief priest in charge. The common folk were not allowed to read or contemplate the text and try to interpret the meaning. As time went by, this view changed. The readers were encouraged to be in the shoes of the author and try to interpret the meaning by contemplating what the author meant by trying to be in the same mindset as the author. Important contributions from philosophers such as Heidegger and Gadamer emphasized the role of the observer or the interpreter in seeking understanding. This meant that the prejudices, biases, belief systems, traditions etc. of the interpreter are important in the act of interpretation. It is meant to be a tango, rather than merely watching a solo dance. My post is heavily inspired by the German philosopher Hans-Georg Gadamer.

One of the ideas in Hermeneutics is that of the Hermeneutic circle. A good example to explain this is to imagine an interpreter reading a sentence of a text. He starts with a word and as he reads the word, he is trying to figure out what the word means in the context of a sentence. He has an idea of what the word means. As he finishes reading the sentence, he re-evaluates the meaning of the word in the context of the full sentence, and he gains an additional understanding of the word, which in turn yields an additional understanding of the sentence. Contrast this with the idea of the parts to a whole. Understanding a part provides an understanding of the whole, which in turn provides an understanding to the part, and so on the circle goes. One can use the same idea with a sentence and the paragraph, a paragraph and the chapter, and a chapter and the book. The meaning is truly holistic and greater than the sum of individual meanings of the words. The order of the words matters very much in the final meaning of the sentence. The relationship of the part to the whole is depicted in the hermeneutic circle below. Analysis is the act of taking things apart, while synthesis is the act of putting things together.

Hermeneutic Circle

Today, hermeneutics does not stand for interpreting texts alone. It has come to represent the art of interpreting to improve understanding. This could be in relation to what another person is saying or related to learning a subject and so on. The most important act of hermeneutics is the act of asking questions. From this standpoint, the guiding principle to keep in mind is that the most important question is the one that has not yet been asked. This aligns with the hermeneutic circle, in the sense that we have to keep going back and forth to generate improved understanding. This is an ongoing process and never meant to be just one iteration. I like the representation of the hermeneutic circle as a spiral, where the spiral gets smaller and smaller, indicating a churning or generation of improved understanding. I have also seen it as a diverging spiral where the coil gets larger and larger to indicate an expansion of understanding.

Spiral

The circle or the spiral depicts a dialectic movement that the interpreter has to take. Each turn of this movement should result in a better understanding of both the part and the whole. Gadamer was strongly against the idea of viewing this as an objective act where the text author is outside and the meaning of the text can be obtained objectively without engaging in introspection. Gadamer wanted the interpreter to bring his prejudices, pre-understanding, fore-meanings etc. to the act of understanding. Above all, Gadamer wanted the interpreter to have openness to meaning.

Gadamer believed that the prejudices or fore-judgments are the source of all our learning. This does not mean that the act of learning will leave the prejudices untouched. The act of learning will in turn modify/update our prejudices for our next hermeneutic act. Gadamer did not belive prejudices to be bad or assign the negative connotation that we normally project.

One analogy that Gadamer used in his hermeneutics was a “horizon.” Much like in the horizon of a landscape that we see, Gadamer used the horizon to depict the limits of our understanding. Gadamer expressed the horizon as the totality of all that can be realized or thought about by a person at a given time in history and in a particular culture. Gadamer said:

The horizon is the range of vision that includes everything that can be seen from a particular vantage point… A person who has no horizon is a man who does not see far enough and hence overvalues what is nearest to him. On the other hand, “to have a horizon” means not being limited to what is nearby, but to being able to see beyond it

The concept of horizon suggests itself because it expresses the superior breadth of vision that the person who is trying to understand must have. To acquire a horizon means that one learns to look beyond what is close at hand – not in order to look away from it but to see it better.

Similar to the landscape, the epistemic horizon changes depending on where we stand and what our perspective is. Where we are situated is based on our tradition, history, belief system etc. and is also bounded by the cultural and societal underpinnings. One may have an urge to see the horizon as a constraint holding us back, but Gadamer, similar to his view or prejudices, expresses horizons as fertile constraints enabling us to further our understanding rather than limiting our understanding. We are bringing something to the new understanding, something that is internal to us rather than relying solely on the experts or the people around us. This is the idea of Hermeneutics for Gadamer. An important idea that Gadamer talks about is the fusion of horizons. This is such a beautiful expression. We should resist the urge to explain this away as simply combining two different horizons or perspectives or the larger idea swallowing up the smaller idea or the weak idea giving way to the stronger idea. Gadamer views the fusion as a transformation which is prompted by the differences in the horizons. Gadamer wants input from both horizons to generate the fusion. This can happen only if we are open and willing to understand while at the same time not ignoring that we have our own perspectives that might need to be changed to gain a better understanding of the phenomenon in question.

Contrast this with the view of just doing as we are told or learning subjects in a rote fashion. Gadamer wants us to bring something from us, our horizon to the hermeneutic act. We should do so, so that we can change ourselves in the process. Gadamer wrote:

What I described as a fusion of horizons was the form in which this unity [of the meaning of a work and its effect] actualizes itself, which does not allow the interpreter to speak of an original meaning of the work without acknowledging that, in  understanding it, the interpreter’s own meaning enters in as well.

We will never be able to stand in another person’s shoes or try to interpret their perspective in an objective fashion. Gadamer is pointing out that we have to do it from our own horizon since that is all that we have access to. When we hear about “respect for people”, we should start with the question, “what does it mean to me?” What does it mean from where I am situated right now? With an open mind, if I start reading about this subject, I may gain a better understanding. This understanding is made better when I allow my horizon to be transformed. The transformation also requires the understanding of what “respect for people” means to Toyota. I cannot ignore my prejudices but rather I should use them to my benefit. The label “handle with care” does not mean that I should not handle the box at all. But rather that my interaction or my handling of the box should be with care. The hermeneutic act is dynamic, personal and perpetual.

I will finish with a quote from Gadamer to reflect further:

“Understanding does not occur when we try to intercept what someone wants to say to us by claiming we already know it. We cannot understand without wanting to understand, that is, without wanting to let something be said.”

Stay safe and Always keep on learning…

In case you missed it, my last post was Newton’s Eye/Bodkin Experiment and the Principle of Undifferentiated Coding:

Newton’s Eye/Bodkin Experiment and the Principle of Undifferentiated Coding:

INewton

I work in the field of ophthalmic medical devices. I recently came across one of Sir Isaac Newton’s set of notes at the Newton project. In the notes, one particular experiment stood out to me. Newton pushed against his eye ball using a bodkin (a blunt needle) and recorded the optical sensations produced by the pressure on the eye. The schematic below drawn by Newton himself denotes the experiment. He noted:

Newton

I took a bodkin gh and put it between my eye & the bone as near to the backside of my eye as I could: and pressing my eye with the end of it (soe as to make the curvature a, bcdef in my eye) there appeared several white dark & colored circles r, s, t, &c. Which circles were plainest when I continued to rub my eye with the point of the bodkin, but if I held my eye & the bodkin still, though I continued to press my eye with it yet the circles would grow faint & often disappear until I renewed them by moving my eye or the bodkin.

He went on to note that there were different colors and types of sensations depending on if he was in a dark room or a well-lit room. I enjoyed reading through his notes because of my profession and also because it was an opportunity to peek inside a genius mind such as Newton. The experiment remined me of another great idea in Cybernetics called ‘the principle of undifferentiated coding’. This idea was proposed by another brilliant mind and one of my heroes, Heinz von Foerster. Von Foerster said:

The response of a nerve cell does not encode the physical nature of the agents that caused its response. Encoded is only ‘how much’ at this point in my body, but not what.

The brain does not perceive light, sound, heat, touch, taste or smell. It receives only neuronal impulses from sensory organs. Thus, the brain does not “see light,” “hear sounds,” etc.; it can perceive only “this much stimulation at this point on my body.” The practical consequence is that all perceptions, let alone “thoughts,” are deductions from sensory stimuli. They cannot be otherwise. All observations are therefore partly the function of the observer. This situation renders complete objectivity impossible in principle.

Ernst von Glasersfeld, the proponent of Radical Constructivism stated:

In other words, the phenomenological characteristics of our experiential world – color, texture, sounds, tastes and smells – are the result of our own computations based on co-occurrence patterns of signals that differ only with regard to their point of origin in the living system’s nervous network.

Cognition is an autonomous activity of the observer. The state of agitation of a nerve cell only codifies the intensity, not the nature of its cause. What is understood or constructed is unique to the observer. This goes against the idea that if we provide information to a person, he or she will understand what is being provided. Von Foerster would say that the hearer not the utterer determines what is being said. In Newton’s experiment, the sensations were not caused by the eye seeing lights, but due to the physical interaction on the eye. This idea is further explored by Humberto Maturana and Francisco Varela with the idea of autopoiesis. As an autopoietic being, we are all organizationally closed and any information generated is an autonomous activity of our cognitive apparatus.

Bernard Scott expands this idea further:

Von Foerster begins his epistemology, in traditional manner, by asking, “How do we know?” The answers he provides-and the further questions he raises-have consequences for the other great question of epistemology, “What may be known?”

there is no difference between the type of signal transmitted from eye to brain or from ear to brain. This raises the question of how it is we come to experience a world that is differentiated, that has “qualia”, sights, sounds, smells. The answer is that our experience is the product of a process of computation : encodings or “representations” are interpreted as being meaningful or conveying information in the context of the actions that give rise to them. What differentiates sight from hearing is the proprioceptive information that locates the source of the signal and places it in a particular action context.

Another key aspect to add to this is the idea of circularity, where the output is fedback into the cognitive apparatus.  We continue to learn based on what we already know. Thus, we can say that learning is a recursive activity. What we learn now helps further our learning tomorrow. There is no static nature when it comes to knowledge and learning. The great French philosopher Montesquieu said, “If triangles made a god, they would give him three sides.” The properties of the world (seen and unseen) are dependent on the constructor/observer. The construction/observation is ongoing and reflexive. Montesquieu also said, “You have to study a great deal to know a little.” In other words, the more you learn, the more you realize how less you know. Or simply put, “the more you know, the less you know.”

I will finish with a wonderful von Foerster story from Maturana.

Maturana tells of a time when Heinz von Foerster and the famous anthropologist, Margaret Mead went to visit Russia. While there, they went to visit a museum. Mead was using a walking stick at that time. At the entrance they learned that she could not carry her walking stick inside. Mead decided that she would not go in since she could not walk long without using the walking stick. Von Foerster convinced her to go with him. He suggested that he would hide the stick in his clothing, and once inside he would give the stick back to her. His thinking was as follows:

ln this country, whether by perfection or by design, people do not commit mistakes, therefore, any guard that sees us Inside with the walking stick will be forced to admit that we were granted a special permit because otherwise we would not be Inside with it.’

 As the story goes, they were able to visit the museum without any problems. Maturana concluded:

Heinz, by not asking beyond the entrance whether they could or not carry a walking stick, behaved as if he considered that through his interactions with the guards he could either interact with the protection system of the museum as a whole, or with its components as Independent entities, and as if he had chosen the latter. He, thus, revealed that he understood that the guards realized through their properties two non-intersecting phenomenal domains, and that they could do this without contradiction because they operated only on neighborhood relations. This allowed Heinz and Margaret Mead to move through the museum carrying what a meta- observer would have called an invisible forbidden walking stick.

Stay safe and Always keep on learning…

In case you missed it, my last post was The System in the Box:

Magician at the Gemba:

157281886840401048HJ

In today’s post, I will be discussing magic, one of my passions. My inspiration for today’s post comes from the great Cybernetician Heinz von Foerster, the wonderful mentalist Derren Brown and the silent partner of Penn & Teller, Raymond Teller. When I was a young kid, I believed that true magic was real. I saw the great American Illusionist David Copperfield on TV, where he did amazing illusions and as a finale act flew around the whole stage and the arena. I also heard about him vanishing the Statue of Liberty in front of spectators. These amazing feats led me to believe that magic was indeed real. I started learning about magic from that young age onward. I became disillusioned quickly when I came across the many secrets of magic. I am thankful for this early disillusionment since it made me a skeptic from a young age.

Magicians can sometimes view themselves as a God-like figure, someone who is superior and can do things that others cannot. They go into theatrics with the belief that they are improving the craft of magic. Derren Brown warns against this approach:

Magic is massively flawed as theatre… Magic is performance, and performance should have an honesty, a relevance and a resonance if it is to be offered to spectators without insulting them… The magician’s role must change from a whimsical god-figure who can click his fingers and have something change in the primary world, to a hero-figure who, with his skills and intriguing character, provides a link with a secondary world of esoteric power. He must arrange circumstances in the primary world – such, as the correct participation of his small audience – in such a way that if that precarious balance is held, a glimmer of magic (only just held under control for a while) will shine through and illuminate the primary world with wonder. That requires investment of time and energy from him and from his audience, and involves the overcoming of conflict. When the routine is over, something has shifted in the world, for both spectator and performer. There is a true sense of catharsis.

Heinz von Foerster, the Socrates of Cybernetics, was also an accomplished magician as a youth. Von Foerster provides his views on magic:

We did it (magic) in such a way that the spectator constructs a world for himself, in which what he wished for takes place. That has led me to the sentence: “The hearer, not the speaker, determines the meaning of an utterance.”

The other thing we saw is: When one succeeds in creating the world in which one can give rise to miracles, it is the fantasy, the imagination, the mind’s eye of the spectator that you support and nourish.

We are letting the spectator construct the experience of magic. We should not construct it for them. There is a difference between a magician saying, “See there is nothing in my hand,” and the spectator saying, “I see nothing in your hand.” The magic occurs in the minds of the spectator. Great magicians allow the spectator to construct the magic. There is no magic without a spectator.

At the Gemba:

How does all this matter to us at the gemba? During my undergrad studies, I first heard about this magical new production system called ‘Lean Manufacturing’. Apparently, Toyota was doing magical things with this approach and all automakers were trying to copy them. Just like with magic tricks, if one is curious enough, the secret of a trick can be found out. But that will not let you be like David Copperfield or Derren Brown. To paraphrase the Toyota veteran, Hajime Ohba, copying what Toyota does is like creating a Buddha image and forgetting to put a soul in it. Later on, when I started working, I was advised by a senior manager that the only book I need to read is ‘The Goal’ by Eliyahu Goldratt. Supposedly, the book had all the answers I would ever need. Luckily, I was already disillusioned once with magic. As I have written a lot in the past, copying Toyota’s solutions (tricks) will not help if you don’t have Toyota’s problems.  The solution to a problem should be isomorphic. That is, the key should match the lock it opens. Toyota developed its production system over decades of trial and error. We cannot simply copy the tools without understanding what problems they were trying to solve. To paraphrase another Toyotaism, Toyota’s Production System is different from the Toyota Production System (TPS).

This brings me to the idea of constructivism. I have talked about this before as well. A bad magician tries to sell the idea of a Superbeing who can do things that don’t seem to belong to the natural realm. He is trying to force his constructed reality onto others. A good magician on the other hand invites the spectator to create the magic in their mind. This is evident in the statements from Heinz von Foerster. The role of the observer is of utmost importance because he is the one doing the description of the phenomenon. What he describes is based on what he already knows. The properties of the “observed” are therefore the properties infused by the observer. The emphasis is then about epistemology (study of knowledge), not ontology (study of reality). Multiple perspectives and continued learning are important. One cannot optimize a complex system. It is dynamic, nonlinear and multidimensional. There are at least as many realities as the number of participants in the complex system. What optimization means depends upon the observer. There may never be a “perfect” answer to a complex problem. There are definitely wrong answers. There are definitely ‘less wrong’ answers. We should seek understanding and learn from multiple perspectives. Humility is a virtue. To paraphrase von Foerster: “Only when you realize you are blind can you see!” This is such a powerful statement. If we don’t know that our understanding is faulty, we cannot improve our understanding. This touches on the idea of Hansei or “self-reflection” in TPS.

We should be aware that everybody has a view of what is out there (reality). We all react to an internally constructed version of reality built of our internal schema/mental models/biases/what we know etc. We cannot be God-like and assume that our version is the true reality. We should not force our version on others as well. We should allow our cocreators/participants to co-construct our social reality together. This touches on the idea of Respect for Humanity in TPS.

To keep with the theme of this post, I will post some of my old videos of magic below, and end with a funny magician joke.

A Spanish magician told everyone he would disappear.

He said, “Uno, dos….” Poof! He disappeared without a tres.

Always keep on learning…

In case you missed it, my last post was The Free Energy Principle at the Gemba:

My performance videos from a long time ago (pardon the video quality)…

The Free Energy Principle at the Gemba:

FEP

In today’s post, I am looking at the Free Energy Principle (FEP) by the British neuroscientist, Karl Friston. The FEP basically states that in order to resist the natural tendency to disorder, adaptive agents must minimize surprise. A good example to explain this is to say successful fish typically find themselves surrounded by water, and very atypically find themselves out of water, since being out of water for an extended time will lead to a breakdown of homoeostatic (autopoietic) relations.[1]

Here the free energy refers to an information-theoretic construct:

Because the distribution of ‘surprising’ events is in general unknown and unknowable, organisms must instead minimize a tractable proxy, which according to the FEP turns out to be ‘free energy’. Free energy in this context is an information-theoretic construct that (i) provides an upper bound on the extent to which sensory data is atypical (‘surprising’) and (ii) can be evaluated by an organism, because it depends eventually only on sensory input and an internal model of the environmental causes of sensory input.[1]

In FEP, our brains are viewed as predictive engines, or also Bayesian Inference engines. This idea is built on predictive coding/processing that goes back to the German physician and physicist Hermann von Helmholtz from the 1800s. The main idea is that we have a hierarchical structure in our brain that tries to predict what is going to happen based on the previous sensory data received. As philosopher Andy Clarke explains, our brain is not a cognitive couch potato waiting for sensory input to make sense of what is going on. It is actively predicting what is going to happen next. This is why minimizing the surprise is important. For example, when we lift a closed container, we predict that it is going to have a certain weight based on our previous experiences and the visual signal of the container. We are surprised if the container is light in weight and can be lifted easily. We have similar experiences when we miss a step on the staircase. From a mathematical standpoint, we can say that when our internal model matches the sensory input, we are not surprised. This refers to the KL divergence in information theory. The lower the divergence, the better the fit between the model and the sensory input, and lower the surprise. The hierarchical model is top down. The prediction flows top down, while the sensory data flows bottom up. If the model matches the sensory data, then nothing goes up the chain. However, when there is a significant difference between the top down prediction and the bottom up incoming sensory date, the difference is raised up the chain. One of my favorite examples to explain this further is to imagine that you are in the shower with your radio playing. You can faintly hear the radio in the shower. When your favorite song plays on the radio, you feel like you can hear it better than when an unfamiliar song is played. This is because your brain is able to better predict what is going to happen and the prediction helps smooth out the incoming auditory signals. British neuroscientist Anil Seth has a great quote regarding the predictive processing idea, “perception is controlled hallucination.”

Andy Clarke explains this further:

Perception itself is a kind of controlled hallucination… [T]he sensory information here acts as feedback on your expectations. It allows you to often correct them and to refine them.

(T)o perceive the world is to successfully predict our own sensory states. The brain uses stored knowledge about the structure of the world and the probabilities of one state or event following another to generate a prediction of what the current state is likely to be, given the previous one and this body of knowledge. Mismatches between the prediction and the received signal generate error signals that nuance the prediction or (in more extreme cases) drive learning and plasticity.

Predictive coding models suggest that what emerges first is the general gist (including the general affective feel) of the scene, with the details becoming progressively filled in as the brain uses that larger context — time and task allowing — to generate finer and finer predictions of detail. There is a very real sense in which we properly perceive the forest before the trees.

What we perceive (or think we perceive) is heavily determined by what we know, and what we know (or think we know) is constantly conditioned on what we perceive (or think we perceive).

(T)he task of the perceiving brain is to account for (to accommodate or ‘explain away’) the incoming or ‘driving’ sensory signal by means of a matching top-down prediction. The better the match, the less prediction error then propagates up the hierarchy. The higher level guesses are thus acting as priors for the lower level processing, in the fashion (as remarked earlier) of so-called ‘empirical Bayes’.

The question on what happens when the prediction does not match is best explained by Friston:

“The free-energy considered here represents a bound on the surprise inherent in any exchange with the environment, under expectations encoded by its state or configuration. A system can minimize free energy by changing its configuration to change the way it samples the environment, or to change its expectations. These changes correspond to action and perception, respectively, and lead to an adaptive exchange with the environment that is characteristic of biological systems. This treatment implies that the system’s state and structure encode an implicit and probabilistic model of the environment.”

Our brains are continuously sampling the data coming in and making predictions. When there is a mismatch between the prediction and the data, we have three options.

  • Update our model to match the incoming data.
  • Attempt to change the environment so that the model matches the environment. Try resampling the data coming in.
  • Ignore and do nothing.

Option 3 is not always something that will yield positive results. Option 1 is a learning process where we are updating our internal models based on the new evidence. Option 2 show ours strong confidence in our internal model, and that we are able to change the environment. Or perhaps there is something wrong with the incoming data and we have to get more data to proceed.

The ideas from FEP can also further our understanding on our ability to balance between maintaining status quo (exploit) and going outside our comfort zones (explore). To paraphrase the English polymath Spencer Brown, the first act of cognition is to differentiate (act of distinction). We start with differentiating – Me/everything else. We experience and “bring forth” the world around us by constructing it inside our mind. This construction has to be a simpler version due to the very high complexity of the world around us. We only care about correlations that matter to us in our local environment. This matters the most for our survival and sustenance. This leads to a tension. We want to look for things that confirm our hypotheses and maintain status quo. This is a short-term vision. However, this doesn’t help in the long run with our sustenance. We also need to explore to look for things that we don’t know about. This is the long-term vision. This helps us prepare to adapt with the everchanging environment. There is a balance between the two.

The idea of FEP can go from “I model the world” to “we model the world” to “we model ourselves modelling the world.” As part of a larger human system, we can cocreate a shared model of our environment and collaborate to minimize the free energy leading to our sustenance as a society.

Final Words:

FEP is a fascinating field and I welcome the readers to check out the works of Karl Friston, Andy Clarke and others. I will finish with the insight from Friston that the idea of minimizing free energy is also a way to recognize one’s existence.

Avoiding surprises means that one has to model and anticipate a changing and itinerant world. This implies that the models used to quantify surprise must themselves embody itinerant wandering through sensory states (because they have been selected by exposure to an inconstant world): Under the free-energy principle, the agent will become an optimal (if approximate) model of its environment. This is because, mathematically, surprise is also the negative log-evidence for the model entailed by the agent. This means minimizing surprise maximizes the evidence for the agent (model). Put simply, the agent becomes a model of the environment in which it is immersed. This is exactly consistent with the Good Regulator theorem of Conant and Ashby (1970). This theorem, which is central to cybernetics, states that “every Good Regulator of a system must be a model of that system.” .. Like adaptive fitness, the free-energy formulation is not a mechanism or magic recipe for life; it is just a characterization of biological systems that exist. In fact, adaptive fitness and (negative) free energy are considered by some to be the same thing.

Always keep on learning…

In case you missed it, my last post was The Whole is ________ than the sum of its parts:

[1] The free energy principle for action and perception: A mathematical review. Christopher L. Buckley, Chang Sub Kim, Simon McGregor, Anil K. Seth (2017)

Constructivism at the Gemba:

forester

Gemba is one of the most emphasized words in Toyota Production System and Lean. Gemba is where the real action takes place, where one should go to gather the facts. As I ventured into Systems Thinking and Cybernetics, especially the teachings of Heinz von Foerster, it gave me a chance to reflect upon ‘gemba’. Often, we talk about gemba being an objective reality existing independent of us, and one which we can understand if we spend enough time in it. What I have come to realize is that the question of whether an objective reality exists is not the right one to ask. For me, the important question is not whether there is a reality (ontology), but how do you come to know that which we refer to as reality (epistemology).

I will start off with the famous aphorism of West Churchman, a key Systems Thinker:

“A systems approach begins when first you see the world through the eyes of another.”

We all have different worldviews. Your “reality” is different than mine, because you and I are different. We have our own unique experiences that shape our worldviews. One could say that we have constructed a stable reality based on our experiences. We learn in school that we should separate the observed from the observer to make valid observations. The idea of constructivism challenges this. Constructivism teaches that any observation made cannot be independent of the observer. Think about this – what we are reacting to, is actually a model of the world we have built in our heads. This world is constructed based on repeat experiences. The repeat experiences have trained our brain to identify correlations that we can experience when we come across a similar experience again. This is detailed in the excellent book on Heinz von Foerster by Lynn Segal (The Dream of Reality: Heinz Von Foerster’s Constructivism):

The constructivists challenge the idea that we match experience to reality. They argue instead that we “re-cognize” a reality through the intercorrelation of the activities of the various sense organs. It is through these computed correlations that we recognize a reality. No findings exist independently of observers. Observing systems can only correlate their sense experiences with themselves and each other. “All we have are correlations,” says von Foerster. “I see the pencil and I hold the pencil; I can correlate my experience of the pencil and use it… There is indeed a deep epistemological divide that separates the two notions of reality, the one characterized by use of the definite article (“the reality”), the other by the indefinite article (“a reality”). The first depends on the assumption that independent observations confirm the existence of the real world, the second, on the assumption the correlation of independent observations leads to the construction of a real world. To wit, the school says my sensation of touch is confirmation for my visual sensation that ‘here is a table.’ A school says my sensation of touch, in correlation with my visual sensation, generates an experience that I may describe as ‘here is a table.’ “

Von Foerster takes this idea further with an excellent gem:

Properties associated with things are indeed properties that belong to the observer. Obscenity- what’s obscene resides in the observer. If Mr. X says this picture is obscene, then we know something about Mr. X and nothing about the picture.

Ludwig von Bertalanffy, one of the founding fathers of Systems Theory, also had similar ideas. He noted in his 1955 essay, “An Essay on the Relativity of Categories”:

It seems to be the most serious shortcoming of classic occidental philosophy, from Plato to Descartes and Kant, to consider man primarily as a spectator, as ens cogitans, while, for biological reasons, he has essentially to be a performer, an ens agens in the world he is thrown in… the conception of the forms of experience as an adaptive apparatus proved in millions of years of struggle for existence, guarantees that there is a sufficient correspondence between “appearance” and “reality”. Any stimulus is experienced not as it is but as the organism reacts to it, and thus the world-picture is determined by psychophysical organization… perception and experienced categories need not mirror the “real” world; they must, however, be isomorphic to it to such degree as to allow orientation and thus survival. What traits of reality we grasp in our theoretical system is arbitrary in the epistemological sense, and determined by biological, cultural and probably linguistic factors?

An important outcome of accepting the idea of constructivism is the realization that I, as the constructor, am responsible for the reality that I create. I cannot revoke my responsibility for my reality nor my actions. I will further this again by using a von Foerster quote:

“Ontology, and objectivity as well, are used as emergency exits for those who wish to obscure their freedom of choice, and by this to escape the responsibility of their decisions.”

With this, we come to realize that our reality is not the only valid reality. As a constructivist, we realize that others have their own versions of reality.

“The only thing you can do as a constructivist is to give others the opportunity to construct their own world.”

Heinz von Foerster captured this with his two imperatives:

Von Foerster’s Ethical Imperative: “Always act in ways that create new possibilities.”

Von Foerster’s aesthetic imperative: “if you want to SEE, learn how to act.”

The ethical imperative is an invitation to realize that there are other participants in your reality, who themselves create their own versions of realities. The aesthetic imperative similarly is an invitation to reflect that objective reality is not possible. One has to interact and experience to construct a stable reality. Additionally, there are certain things that cannot be made explicit. These have to be implicit in action. My own humble take on the aesthetic imperative is – “if you want to SHOW, learn how to act.” The two imperatives flow into each other nicely. Von forester teaches that we should ensure autonomy for the other participants. For if we do not stipulate autonomy, then the observation does not result in interaction and thus minimize the experience. The concept of observation itself disappears. We should give the responsibility for others to construct their own reality as autonomous agents. In order to see, there has to be interaction between sensorium and motorium.

The idea of autonomous agents is important in constructivism. As Ernst von Glasersfeld puts it: “From the constructivist perspective, ‘input’ is of course not what an external agent or world puts in, but what the system experiences.” This means that we cannot simply command and expect the participants to follow through the orders. This is the idea of viewing the worker as a machine, not as a thinking agent.We should not stipulate the purpose of another. The participants at the gemba must be given the freedom to construct their own stable reality. This includes stipulating their own purposes. Voiding this takes away their freedom of choice and responsibility from the participants.

This brings us back to the original point about gemba. When you go to gemba, you are trying to gather facts from the real place. But as we have been reflecting, reality is not something objective. We need to seek understanding from others’ viewpoints. If we do not seek understanding from others, our reality will not include their versions. Our models will remain our own, one full of our own biases and weaknesses. There is no one Gemba out there. Gemba is a socially constructed reality, one that is a combination of everybody’s constructed reality. As noted earlier, to improve our experience, we should go to gemba often. Our experience helps with our construction of stable reality, which in turn improves our experience. This idea of closure is important in cybernetics and constructivism. We will use another von Foerster gem to improve this understanding – “Experience is the cause. The world is the consequence.”

The very act of knowing that our knowledge is incomplete or imperfect is a second order act. This allows us to perform other second order acts such as thinking about thinking. The idea of constructivism and the rejection of an objective reality might challenge your current mental paradigm of the world. But this is an important idea to at least consider.

I will finish this post with yet another wonderful von Foerster gem, where he talks about Alfred Korzybski’s famous quote, “The map is not the territory.”:

“Ladies and Gentlemen, I am glad that you are all seated, for now comes the Heinz von Foerster theorem: ‘The map is the territory’ because we don’t have anything else but maps. We only have depictions or presentations – I wouldn’t even say re-presentations – that we can braid together within language with the other.”

Always keep on learning…

In case you missed it, my last post was If the Teacher Hasn’t Learned, the Teacher Hasn’t Taught: