The Map at the Gemba:

Map

In today’s post I am looking at “The map is not the territory.” This is a famous statement that is often cited to indicate that what we have is a model and not the real thing. Another statement that is quite similar is “All models are wrong, but some are useful.” The “map statement” is attributed to the Polish philosopher and the man behind General Semantics, Alfred Korzybski. A lot of Korzybski’s ideas are very well aligned with Cybernetics and Systems Thinking.

Korzybski was inspired by a paragraph in the great Bertrand Russell’s “Introduction to Mathematical Philosophy”. Russell was referring to Josiah Royce’s ideas with a map. Russell wrote:

One of the most striking instances of a “reflexion” is Royce’s illustration of the map: he [Royce] imagines [making] a map of England upon a part of the surface of England. A map, if it is accurate, has a perfect one-one correspondence with its original; thus our map, which is part, is in one-one relation with the whole, and must contain the same number of points as the whole, which must therefore be a reflexive number. Royce is interested in the fact that the map, if it is correct, must contain a map of a map, which must in turn contain a map of the map of the map, and so on ad infinitum. This point is interesting, but need not occupy us at this moment. In fact, we shall do well to pass from picturesque illustrations to such as are more completely definite, and for this purpose we cannot do better than consider the number series itself.

Korzybski was very much interested in the idea of relationships of structures (internal and external). He came up with three main ideas for his General Semantics. He wrote:

The premises of the non-Aristotelian system can be given by the simple analogy of the relation of a map to the territory:

  1. A map is not the territory.
  2. A map does not represent all of a territory.
  3. A map is self-reflexive in the sense that an ‘ideal’ map would include a map of the map, etc., indefinitely.

Applied to daily life and language:

  1. A word is not what it represents.
  2. A word does not represent all of the ‘facts’, etc.
  3. Language is self-reflexive in the sense that in language we can speak about language.

We make sense of the world by abstracting a model of the world inside our mind. We are map makers and we create maps to make sense of the world around us. However, the maps themselves are not real. We should not mistake our version of the world to be real, and the true version. We are modeling the world, not the other way around. We should not try to make the world match our model. For example, when we say the word “apple”, the utterance is not the object “apple”. The meaning of a word does not lie in the word itself. The meaning is in the people who use the word. Apple can be a fruit, or it can be a company that sells iPhones. Or it could stand for an inside joke that others are not aware of.

Our understanding is never complete. It does not possess ALL the details. Korzybski called this non-Allness. We should not assume that we know ALL the details. Using the map analogy, a map cannot have all the details of the territory. The map is a static abstraction, and its usefulness comes from the abstraction. A map that is as big as the territory is not at all useful. The world around us has lot more variety than what we can handle. To make sense of the world, we have to filter out a lot of details and focus on the details that we are interested in. Every observation is an abstraction of the phenomenon. Every description is an abstraction of the observation. All of this is dependent on the observer.

This brings us to the third idea regarding a map – A map is self-reflexive. The idea of circularity is of great importance in Cybernetics. A true map will contain the map maker making the map, which in turn will contain the map maker making the map and so on. The idea of circularity is frowned upon in logic. However, the idea of circularity provides the second order characteristics such as observing how we observe or learning how we learn etc. We make sense of words using other words that in turn can be made sense using the same words we started with. Heinz von Foerster said it the best:

There is a word for word, namely “word.” If you don’t know what word means, you can look it up in a dictionary. I did that. I found it to be an “utterance.” I asked myself, “What is an utterance?” I looked it up in the dictionary. The dictionary said that it means “to express through words.” So here we are back where we started. Circularity; A implies A.

As Lance Strate puts it:

Whereas reality refers to nothing apart from itself (unless we confer additional meaning onto it), representations have the potential to be self–referential, that is to refer back to themselves or to other representations. So, for example, if we are standing within a territory and looking at an ideal map of that territory, it would contain within it a representation of itself, a map of the map. Ideally, the map within the map would also contain a representation of itself, a map of a map of a map, and so on ad infinitum. In the same way, some of our statements may be about the world as we experience it, but we can also make statements about statements, and statements about those statements, and so on. We can react to our reactions, evaluate our evaluations, question our questions, and so forth.

The idea of self-reflexivity brings up the idea of the observer. Korzybski has said the following about the observer:

“All man can know is a joint phenomenon of the observer and the observed.”

The idea of an observer-free observation is not meaningful. Korzybski expanded on this further:

We used and still use a terminology of ‘objective’ and ‘subjective’, both extremely confusing, as the so-called ‘objective’ must be considered a construct made by our nervous system, and what we call ‘subjective’ may also be considered ‘objective’ for the same reasons.

The Map Is the Territory:

I would now like to expand on the ideas of Korzybski with ideas from the great Cyberneticians Heinz von Foerster and Humberto Maturana. All we have access to is the world that we have constructed inside based on our numerous experiences, belief systems, biases etc. So, we have to realize while the map is not the territory, the map is all we got, and thus practically the map is the territory. The idea of non-Allness is of utmost value for us. We do not have all the knowledge. The map we made has already become outdated. What we know or what we think we know may not help us since the world around us has changed quite a lot already. We should realize our limitations, and seek understanding from others. We should invite multiple perspectives and always be ready to update/modify our maps. We should train ourselves to look for differences in similar things and similarities in different things.

Heinz von Foerster said:

“Ladies and Gentlemen, I am glad that you are all seated, for now comes the Heinz von Foerster theorem: ‚The map is the territory’ because we don’t have anything else but maps. We only have depictions or presentations – I wouldn’t even say re-presentations – that we can braid together within language with the other.”

On a similar note, Humberto Maturana said:

“I maintain that all there is is that which the observer brings forth in his or her distinctions. We do not distinguish what is, but what we distinguish is. The distinctions of the observer specify existence and isness… “The Map IS the territory” is a metaphor.

I will finish with a wonderful Heinz von Foerster story that he told about the anthropologist Margaret Mead:

Margaret Mead quickly learned the colloquial language of many tribes by pointing to things and waiting for the appropriate noises. She told me that once she came to a particular tribe, pointed to different things, but always got the same noises, “chumulu.” A primitive language she thought, only one word! Later she learned that “chumulu” means “pointing with finger.”

 Stay safe and Always keep on learning…

In case you missed it, my last post was The Cybernetics of Respect for People:

A Study of “Organizational Closure” and Autopoiesis:

autopoiesis

In today’s post, I am looking at the phrase “Organizational Closure” and the concept of autopoiesis. But before that, I would like to start with another phrase “Information Tight”. Both of these phrases are of great importance in the field of Cybernetics. I first came across the phrase “Information Tight” in Ross Ashby’s book, “An Introduction to Cybernetics”. Ross Ashby was one of the pioneers of Cybernetics. Ashby said: [1]

Cybernetics might, in fact, be defined as the study of systems that are open to energy but closed to information and control— systems that are “information‐tight”.

This statement can be confusing at first, when you look at it from the perspective of Thermodynamics. Ashby is defining “information tight” as being closed to information and control. The Cybernetician, Bernard Scott views this as: [2]

…an organism does not receive “information” as something transmitted to it, rather, as a circularly organized system it interprets perturbations as being informative.

Here the “tightness” refers to the circular causality of the internal structure of a system. This concept was later developed as “Organization Closure” by the Chilean biologists, Humberto Maturana and Francisco Varela. [3] They were trying to answer two questions:

  • What is the organization of the living?
  • What takes place in the phenomenon of perception?

In answering these two questions, they came up with the concept of Autopoiesis. Auto – referring to self, and poiesis – referring to creation or generation. Autopoiesis means self-generation. Escher’s “Drawing Hands” is a good visualization of this concept. We exist in the continuous production of ourselves.

Escher

As British organizational theorist, John Mingers put it: [4]

Maturana and Varela developed the concept of autopoiesis in order to explain the essential characteristics of living as opposed to nonliving systems. In brief, a living system such as a cell has an autopoietic organization, that is, it is ”self-producing. ” It consists of processes of production which generate its components. These components themselves participate in the processes of production in a continual recursive re-creation of self. Autopoietic systems produce themselves and only themselves.

John H Little provides further explanation: [5]

Autopoietic systems, are self-organizing in that they produce and change their own structures but they also produce their own components… The system’s production of components is entirely internal and does not depend on an input-output relation with the system environment.

Two important principles underlying autopoiesis are “structural determinism” and “organizational closure.” To understand these principles, it is first necessary to understand the difference between “structure” and “organization” as Maturana uses these terms. “Organization” refers to the relations between components which give a system its identity. If the organization of a system changes, its identity changes. “Structure” refers to the actual components and relations between components that make up a particular example of a type of system.

Conceptually, we may understand the distinction between organization and structure by considering a simple mechanical device, such as a pencil. We generally have little difficulty recognizing a machine which is organized as a “pencil” despite the fact that pencil may be structurally built in a variety of ways and of a variety of materials. One organizational type, therefore may be manifested by any number of different structural arrangements.

Marjatta Maula provides additional information on the “organization” and “structure”, two important concepts in autopoiesis.

In autopoiesis theory, the concepts ‘organization’ and ‘structure’ of a system have a specific meaning. ‘Organization’ refers to an idea (such as an idea of airplane or a company in general). ‘Structure’ refers to the actual embodiment of the idea (such as a specific airplane or a specific company). Thus, ‘organization’ is abstract but ‘structure’ is concrete (Mingers, 1997). Over time an autopoietic system may change its components and structure but maintain its ‘organization.’ In this case, the system sustains its identity. If a system’s ‘organization’ changes, it loses its current identity (von Krogh & Roos, 1995). [6]

The most important idea that Maturana and Varela put forward was that an autopoietic system does not take in information from its environment and an external agent cannot control an autopoietic system. Autopoietic systems are organizationally (or operationally) closed. That is to say, the behavior of the system is not specified or controlled by its environment but entirely by its own structure, which specifies how the system will behave under all circumstances. It is as a consequence of this closure that living systems cannot have “inputs” or “outputs”-nor can they receive or produce information-in any sense in which these would have independent, objective reality outside the system. Put in another way, since the system determines its own behavior, there can be no “instructive interactions” by means of which something outside the system determines its behavior. A system’s responses are always determined by its structure, although they may be triggered by an environmental event.[7]

Although organizationally closed, a system is not disconnected from its environment, but in fact in constant interaction with it. Maturana and Varela (1987) call this ongoing process “structural coupling” (p. 75). System and environment (which will include other systems) act as mutual sources of perturbation for one another, triggering changes of state in one another. Over time, provided there are no destructive interactions between the system and the medium in which it realizes itself (i.e., its environment), the system will appear to an observer to adapt to its environment. What is in fact happening, though, is a process of structural “drift” occurring as the system responds to successive perturbations in the environment according to its structure at each moment. [7]

In other words, the idea of an organism as an information processing agent is a misunderstanding. When you look at it further, although it might appear as strange, little by little, it might make sense. Think about a classroom, a teacher is giving a lecture and the same “information” reaches the students. However, what type and amount of “information” is taken in depends on each individual student. Maturana explains it as the teacher makes the selection (in the form of the lecture), however, the teacher cannot make the student accept the “information” in its entirety. A loose analogy is a person pushing a button on a vending machine. The internal structure of the machine determines how to react. If the machine does not have a closed structure inside, it cannot react. The pressing of the button is viewed as a perturbation, and the vending machine reacts based on its internal structure at that point in time. If the vending machine was out of order or if there was something blocking the item, the machine will not dispense even if the external agent “desired” the machine to reach in a specific way.

According to Maturana, all systems consisting of components are structure-determined, which is to say that the actual changes within the system depend on the structure itself at that particular instant. Any change in such a system must be a structural change. If this is the case, then an environmental action cannot determine its own effect on a system. Changes, or perturbations in the environment can only trigger structural change or compensation. “It is the structure that determines both what the compensation will be and even what in the environment can or cannot act as a trigger” (Mingers, 1995, p. 30).

It is the internal structure of the system at any point in time that determines:

  1. all possible structural changes within the system that maintain the current organization, as well as those that do not, and
  2. all possible states of the environment that could trigger changes of state and whether such changes would maintain or destroy the current organization (Mingers, 1995, p. 30).[5]

As we understand the idea of autopoiesis, we start to realize that it has serious implications. Our abstract concept of a process is shown below:[5]

INPUT -> PROCESS -> OUTPUT

In light of autopoiesis, we can see that this abstraction does not make sense. An autopoietic system cannot accept inputs. We treat information and knowledge as a commodity that can be easily coded, stored and transferred. Again, in the light of autopoietic systems, we require a new paradigm. As Little continues:[5]

An organizationally closed system is one in which all possible states of activity always lead to or generate further activity within itself… Organizationally closed systems do not have external inputs that change their organization, nor do they outputs in terms of their organization. Autopoietic systems are organizationally closed and do not have inputs and outputs in terms of their organization. They may appear to have them, but that description only pertains to an observer who can see both the system and its environment, and is a mischaracterization of the system. The idea of organizational closure, however, does not imply that such systems have no interactions with their environment. Although their organization is closed, they still interact with their environment through their structure, which is open.

John Mingers provides further insight: [4]

Consider the idea that the environment does not determine, but only triggers neuronal activity. Another way of saying this is that the structure of the nervous system at a particular time determines both what can trigger it and what the outcome will be. At most, the environment can select between alter­natives that the structure allows. This is really an obvious situation of which we tend to lose sight. By analogy, consider the humming computer on my desk. Many interactions, e.g., tapping the monitor and drawing on the unit, have no effect. Even pressing keys depends on the program recognizing them, and press­ing the same key will have quite different effects depending on the computer’s current state. We say, “I’ll just save this file,” and do so with the appropriate keys as though these actions in themselves bring it about. In reality the success (or lack of it) depends entirely on our hard-earned structural coupling with the machine and its software in a wider domain, as learning a new system reminds us only too well.

Another counterintuitive idea was put forth by the German sociologist Niklas Luhmann, that further elaborates the autopoietic system’s autonomous nature and the “independence” from the external agent:

The memory function never relates to facts of the outer world . . . but only to the states of the system itself. In other words, a system can only remember itself.

An obvious question at this point is – If a system is so independent of its environment, how does it come to be so well adjusted, and how do systems come to develop such similar structures?[4]

The answer lies in Maturana’s concept of structural coupling. An autopoietic organization is realized in a particular structure. In general, this structure will be plastic, i.e., changeable, but the changes that it undergoes all maintain auto poiesis so long as the entity persists. (If it suffers an interaction which does not maintain autopoiesis, then it dies.) While such a system exists in an environ­ment which supplies it with necessities for survival, then it will have a structure suitable for that environment or autopoiesis will not continue. The system will be structurally coupled to its medium. This, however, is always a contingent matter and the particular structure that develops is determined by the system. More generally, such a system may become structurally coupled with other systems-the behavior of one becomes a trigger for the other, and vice versa.

Maturana and Varela did not extend the concept of autopoiesis to a larger level such as a society or an organization. Several others took this idea and went further. [8]

Using the tenets of autopoietic theory (Zeleny: 2005), he interprets organizations as networks of interactions, reactions and processes identified by their organization (network of rules of coordination) and differentiated by their structure (specific spatio-temporal manifestations of applying the rules of coordination under specific conditions or contexts). Following these definitions, Zeleny argues that the only way to make organizational change effective is to change the rules of behavior (the organization) first and then change processes, routines, and procedures (the structure). He explains that it is the system of the rules of coordination, rather than the processes themselves, that defines the nature of recurrent execution of coordinated action (recurrence being the necessary condition for learning to occur). He states: ‘Organization drives the structure, structure follows organization, and the observer imputes function’.

 Espejo, Schumann, Schwaninger, and Bilello (1996)adopt similar terminology, but instead of organization they refer to an organization’s identity as the element that defines any organization, explaining that it is the relationships between the participants that create the distinct identity for the network or the group. Organization is then defined as ‘a closed network of relationships with an identity of its own’. While organizations may share the same kind of identity, they are distinguished by their structures. People’s relationships form routines, involving roles, procedures, and uses of resources that constitute stable forms of interaction. These allow the integrated use and operation of the organization’s resources. The emergent routines and mechanisms of interaction then constitute the organization’s structure. Hence, just like any autopoietic entity, organizations as social phenomena are characterized by both an organization (or identity) and a structure. The rules of interaction established by the organization and the execution of the rules exhibited by the structure form a recursive bond.

Final Words:

I highly encourage the readers to pursue understanding of autopoiesis. It is an important concept that requires a shift in your thinking.

I will finish off with an example of autopoietic system that is not living. I am talking about von Neumann probes. Von Neumann probes are named after John von Neumann, one of the most prolific polymaths of last century. A von Neumann probe is an ingenious solution for fast space exploration. A von Neumann probe is a spacecraft that is loaded with an algorithm for self-replication. When it reaches a suitable celestial body, it will mine the required raw materials and build a copy of itself, complete with the algorithm for self-replication. The new spacecraft will then proceed to explore the space in a different direction. The self-replication process continues with every copy in an exponential manner. You may like this post about John von Neumann.

Always keep on learning…

In case you missed it, my last post was The Illegitimate Sensei:

[1] An Introduction to Cybernetics – Ross Ashby

[2] Second-order cybernetics: an historical introduction – Bernard Scott

[3] Autopoiesis and Cognition: The Realization of the Living – Francisco Varela and Humberto Maturana

[4] The Cognitive Theories of Maturana and Varela – John Mingers

[5] Maturana, Luhmann, and Self-Referential Government – John H Little

[6] Organizations as Learning Systems – Marjatta Maula

[7] Implications of The Theory Of Autopoiesis For The Discipline And Practice Of Information Systems – Ian Beeson